补码是在反码后加1,那个1是怎么加的

 我来答
做而论道
高能答主

2022-06-25 · 把复杂的事情简单说给你听
知道大有可为答主
回答量:3万
采纳率:80%
帮助的人:1.1亿
展开全部

“原码取反,反码加一”,这只是一个方法,并不是补码的定义。

补码的来源,并不是什么原码反码符号位以及取反加一。

只学习“取反加一”,确实是【不能理解补码的意义】。

补码,其实,是一个“代替负数运算的”的正数。

借助于补码,减法,就可以用加法代替。

使用补码,就能统一加减法,从而,就能简化计算机硬件。

--------------------------

正数(补码),怎么就能够代替负数呢?

十进制来说明,比较容易理解。

如果限定【仅用 2 位 10 进制数】,且看下面的算式:

  24 - 1 = 23

  24 + 99 = (一百) 23

要求保留 2 位数,进位,就必须忍痛舍弃了。

此时,就会发现:+99 就和-1,是完全等效的。

+99,就称为-1 的补数。

+98,是-2 的补数。

。。。

如果,使用 3 位 10 进制数,-1 的补数,就是+999 了。

求补数的公式,大家都会推导:

  补数 = 负数 + 10^n, n 是位数。

式中的 10^n,是 n 位 10 进制数的计数周期。

--------------------------

计算机使用 2 进制,补数,就改称为:补码。

在计算机中,CPU 的每次计算,其位数,也是限定的。

八位机,就是八位,16 位机就是 16 位。

一个字节,是 8 位 2 进制。共有 2^8 = 256 组代码。

其范围是:0000 0000~1111 1111 (十进制 255)。

此时,-1 的补码,就是 255 (1111 1111)。

同理,-2 的补码是 254 (1111 1110)。

。。。

求补码的公式,仍然和十进制雷同:

  补码 = 负数 + 2^n, n 是位数。

式中的 2^n,是 n 位 2 进制数的计数周期。

只有负数,才需要用补码替换。

而正数,必须直接进行计算,不许变换。

所以,正数,就不必讨论补码的问题。

在 256 组二进制中,用 128 组来代替负数:-1~-128。

-1 的补码是:-1 + 2^8 = 255 = 1111 1111。

 。。。 

-128 的补码是:-128 + 2^8 = 128 = 1000 0000。 

以上,就是【补码的来源,以及存在的意义】。

不详之处,大家自己再补充吧。

--------------------------

由求补码的公式:补码 = 负数 + 2^n。

就可以推出“绝对值取反加一”的简便方法。

注意:

只能推出“绝对值取反加一”,也即“正数取反加一”。

并不是“原码取反加一,符号位不变”。

就是说:原码反码符号位,在求补码时,这些,都是用不上的。

那么,“原码取反加一,符号位不变”是怎么来的? 不知道!

这些,都没有理论基础,凭空说白话而已,完全属于无稽之谈。

原码反码,都是不合理的:一个零,却都指定了两个代码!

这么混乱,怎么能使用? 所以,计算机根本就不存在这两种代码。

特别是:-128 有八位的补码,却没有原码和反码。

那么,用“原码取反加一 ... ”,怎么可能求出补码!

中智咨询
2024-08-28 广告
在当今竞争激烈的商业环境中,企业需要不断提高自身的竞争力,以保持市场份额和增加利润。通过人效提升,企业可以更有效地利用有限的资源,提高生产力和效益,从而实现盈利目标。中智咨询提供全方位的组织人效评价与诊断、人效提升方案等数据和管理咨询服务。... 点击进入详情页
本回答由中智咨询提供
可轩163
2017-05-09 · TA获得超过1.3万个赞
知道大有可为答主
回答量:4824
采纳率:88%
帮助的人:1723万
展开全部
举例说明如下:
真值 -11d = -1011b , 若字长8位, 则:
[-11d]原 =10001011b , 最高位是符号位,1表示负数,其余为数值位
[-11d]反 =11110100b , 将原码除符号位之外的各位取反得反码
[-11d]补 =11110101b ,将反码末位加1得补码
d是十进制数后缀 , b是二进制数后缀
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式