已知sinx/x是f(x)的原函数,求∫x*f'(x)dx.

 我来答 举报
小小芝麻大大梦
高粉答主

2019-04-07 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:990万
展开全部

∫x*f'(x)dx.==(xcosx-2sinx)/x+C,C为常数。

解答过程如下:

sinx/x是f(x)的原函数。

即∫f(x)dx=sinx/x+C

求导得到f'(x)= (cosx *x -sinx)/x²

那么∫x*f'(x)dx

=x* f(x) -∫f'(x)dx

= (cosx *x -sinx)/x -sinx/x +C

=(xcosx-2sinx)/x+C,C为常数

扩展资料:

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

一个人郭芮
高粉答主

2017-05-22 · GR专注于各种数学解题
一个人郭芮
采纳数:37942 获赞数:84707

向TA提问 私信TA
展开全部
sinx/x是f(x)的原函数
即∫f(x)dx=sinx/x+C
求导得到f(x)= (cosx *x -sinx)/x²
那么∫x*f'(x)dx
=x* f(x) -∫f(x)dx
= (cosx *x -sinx)/x -sinx/x +C,C为常数
本回答被网友采纳
13 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
茹翊神谕者

2023-07-23 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1645万
展开全部

简单分析一下,详情如图所示

抢首赞 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式