数学题“(a+b)^n=?” 公式是什么?

 我来答
子不语望长安
高粉答主

推荐于2019-10-22 · 说的都是干货,快来关注
知道答主
回答量:37
采纳率:0%
帮助的人:3.1万
展开全部

展开公式是:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,r)a^(n-r)b^r+...+C(n,n)b^n。


依据:(二项式定理的应用)

1、二项式定理(英语: Binomial theorem),又称 牛顿二项式定理,由 艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如 展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即 广义二项式定理。


2、它不是一个等差数列,也不是一个 等比数列,但通过二项式定理的展开式,可以转化为按等差数列,由低次幂到高次幂递进求和,最终可推导至 李善兰 自然数幂求和公式的原形。


3、所有添加的二项式展开式数,按二项式展开式确定,如此可以顺利进行自然数的1至n幂的求和公式的递进推导,最终可以推导至 李善兰 自然数幂求和公式。


扩展资料:


数学归纳法证明二项式定理:


证明:当n=1时,左边=(a+b)1=a+b


右边=C01a+C11b=a+b;左边=右边


假设当n=k时,等式成立,即(a+b)n=C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn成立;


则当n=k+1时, (a+b)(n+1)=(a+b)n*(a+b)=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*(a+b)


=[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*a+[C0nan+C1n a(n-1)b十…十Crn a(n-r)br十…十Cnn bn]*b


=[C0na(n+1)+C1n anb十…十Crn a(n-r+1)br十…十Cnn abn]+[C0nanb+C1n a(n-1)b2十…十Crn a(n-r)b(r+1)十…十Cnn b(n+1)]


=C0na(n+1)+(C0n+C1n)anb十…十(C(r-1)n+Crn) a(n-r+1)br十…十(C(n-1)n+Cnn)abn+Cnn b(n+1)]


=C0(n+1)a(n+1)+C1(n+1)anb+C2(n+1)a(n-1)b2+…+Cr(n+1) a(n-r+1)br+…+C(n+1)(n+1) b(n+1)


∴当n=k+1时,等式也成立;


所以对于任意正整数,等式都成立 


二、二项展开式的性质:


(1)项数:n+1项


(2)第k+1项的二项式系数是  


(3)在二项展开式中,与首末两端等距离的两项的二项式系数相等。


(4)如果二项式的幂指数是偶数,中间的一项的二项式系数最大。如果二项式的幂指数是奇数,中间两项的的二项式系数最大,并且相等。

参考资料:百度百科-二次项展开式

提着捕鱼器
推荐于2019-08-26 · TA获得超过2.3万个赞
知道小有建树答主
回答量:180
采纳率:100%
帮助的人:2.8万
展开全部

这是二项式定理的内容,
数学题“(a+b)^n=?”的展开公式是:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,r)a^(n-r)b^r+...+C(n,n)b^n。

1、二项式定理(英语: Binomial theorem),又称 牛顿二项式定理,由 艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如 展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即 广义二项式定理。

2、它不是一个等差数列,也不是一个 等比数列,但通过二项式定理的展开式,可以转化为按等差数列,由低次幂到高次幂递进求和,最终可推导至 李善兰 自然数幂求和公式的原形。

3、所有添加的二项式展开式数,按二项式展开式确定,如此可以顺利进行自然数的1至n幂的求和公式的递进推导,最终可以推导至 李善兰 自然数幂求和公式。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式