展开全部
∫xln(x² +1)dx
=(1/2)∫ln(x² +1)dx^2
=(1/2)x^2ln(x^2+1)-∫x^2*2x/(1+x^2)dx
=(1/2)x^2ln(x^2+1)-2∫[(x^2+1)x-x]/(1+x^2)dx
=(1/2)x^2ln(x^2+1)-2∫xdx+2∫x/(1+x^2)dx
=(1/2)x^2ln(x^2+1)-x^2+ln(1+x^2)+c
=(1/2)∫ln(x² +1)dx^2
=(1/2)x^2ln(x^2+1)-∫x^2*2x/(1+x^2)dx
=(1/2)x^2ln(x^2+1)-2∫[(x^2+1)x-x]/(1+x^2)dx
=(1/2)x^2ln(x^2+1)-2∫xdx+2∫x/(1+x^2)dx
=(1/2)x^2ln(x^2+1)-x^2+ln(1+x^2)+c
追问
谢谢
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询