求大神解高数_(´ཀ`」 ∠)__
1个回答
展开全部
设x=3/cosα 则:dx=3sinα/cos²αdα
∫√(x²-9)³dx
=∫√(9/cos²α-9)³dx
=27∫tan³α3sinα/cos²αdα
=81∫tan³αsinαd(tanα)
=(81/4)∫sinαd(tanα)^4
=(81/4)sinα(tanα)^4-(81/4)∫(tanα)^4dsinα
=(81/4)sinα(tanα)^4-(81/4)∫(tanα)^4cosαdα
=(81/4)sinα(tanα)^4-(81/4)∫(tanαsin³α)/cos²αdα
=(81/4)sinα(tanα)^4-(81/4)∫sin³αd(tanα)
=(81/4)sinα(tanα)^4-(81/4)sin³αtanα+(81/4)∫tanαdsin³α
=(81/4)sinα(tanα)^4-(81/4)sin³αtanα+(81/4)∫tanα3sin²αcosαdα
=(81/4)sinα(tanα)^4-(81/4)sin³αtanα+(243/4)∫sinα(1-cos²α)dα
=(81/4)sinα(tanα)^4-(81/4)sin³αtanα-(243/4)cosα+(81/4)cos³α+C
∫√(x²-9)³dx
=∫√(9/cos²α-9)³dx
=27∫tan³α3sinα/cos²αdα
=81∫tan³αsinαd(tanα)
=(81/4)∫sinαd(tanα)^4
=(81/4)sinα(tanα)^4-(81/4)∫(tanα)^4dsinα
=(81/4)sinα(tanα)^4-(81/4)∫(tanα)^4cosαdα
=(81/4)sinα(tanα)^4-(81/4)∫(tanαsin³α)/cos²αdα
=(81/4)sinα(tanα)^4-(81/4)∫sin³αd(tanα)
=(81/4)sinα(tanα)^4-(81/4)sin³αtanα+(81/4)∫tanαdsin³α
=(81/4)sinα(tanα)^4-(81/4)sin³αtanα+(81/4)∫tanα3sin²αcosαdα
=(81/4)sinα(tanα)^4-(81/4)sin³αtanα+(243/4)∫sinα(1-cos²α)dα
=(81/4)sinα(tanα)^4-(81/4)sin³αtanα-(243/4)cosα+(81/4)cos³α+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询