一道隐函数的题,求数学大神帮帮忙,谢谢!
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
2个回答
展开全部
记 u = x+z/y, v = y+z/x
F(u, v) = 0 两边对 x 求偏导,得
Fu[1+(∂z/∂x)/y] + Fv[x(∂z/∂x)-z]/x^2 = 0,
Fu(y+∂z/∂x)x^2 + Fv[x(∂z/∂x)-z]y = 0
∂z/∂x = (zyFv - yx^2Fu)/(x^2Fu+xyFv)
F(u, v) = 0 两边对 y 求偏导,得
Fu[y(∂z/∂y)-z]/y^2 + Fv[1+(∂z/∂y)/x] = 0,
Fu[y(∂z/∂y)-z]x + Fv[x+(∂z/∂y)]y^2 = 0,
∂z/∂y = (zxFu - xy^2Fv)/(xyFu+y^2Fv)
x∂z/∂x + y∂z/∂y = (zyFv - yx^2Fu)/(xFu+yFv) + (zxFu - xy^2Fv)/(xFu+yFv)
= [(zy-xy^2)Fv + (zx-yx^2Fu)]/(xFu+yFv)
= [y(z-xy)Fv + x(z-yxFu)]/(xFu+yFv)
= (z-xy)(yFv+xFu)/(xFu+yFv) = z-xy
F(u, v) = 0 两边对 x 求偏导,得
Fu[1+(∂z/∂x)/y] + Fv[x(∂z/∂x)-z]/x^2 = 0,
Fu(y+∂z/∂x)x^2 + Fv[x(∂z/∂x)-z]y = 0
∂z/∂x = (zyFv - yx^2Fu)/(x^2Fu+xyFv)
F(u, v) = 0 两边对 y 求偏导,得
Fu[y(∂z/∂y)-z]/y^2 + Fv[1+(∂z/∂y)/x] = 0,
Fu[y(∂z/∂y)-z]x + Fv[x+(∂z/∂y)]y^2 = 0,
∂z/∂y = (zxFu - xy^2Fv)/(xyFu+y^2Fv)
x∂z/∂x + y∂z/∂y = (zyFv - yx^2Fu)/(xFu+yFv) + (zxFu - xy^2Fv)/(xFu+yFv)
= [(zy-xy^2)Fv + (zx-yx^2Fu)]/(xFu+yFv)
= [y(z-xy)Fv + x(z-yxFu)]/(xFu+yFv)
= (z-xy)(yFv+xFu)/(xFu+yFv) = z-xy
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询