3个回答
展开全部
分母的极限是0,分子的极限是ln tan1.而tan1近似等于1.55,再对1.55取自然对数时分子的极限肯定不等于0。所以不满足洛比达法则。极限应该是无穷大。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.
原式 = lim(x->0) 2(sinx-x*cosx)/(x^2 *sin2x)
= lim(x->0) 2(cosx-cosx+x*sinx)/(2x*sin2x +x^2 *2cos2x)
= lim(x->0) sinx/(sin2x+x*cos2x)
= lim(x->0) cosx/(2cos2x+cos2x-2x*sin2x)
=1/3
2.
原式 = lim(x->1) (3x^2 -3)/(3x^2 -2x-1)
= lim(x->1) 6x/(6x-2)
=3/2
3.
原式 = lim(x->0) (sinx-e^x +1)/[sinx*(e^x -1)]
= lim(x->0) (cosx-e^x)/[cosx*(e^x -1)+sinx*e^x]
= lim(x->0) (-sinx-e^x)/[-sinx*(e^x -1)+2cosx*e^x+sinx*e^x]
=-1/2
原式 = lim(x->0) 2(sinx-x*cosx)/(x^2 *sin2x)
= lim(x->0) 2(cosx-cosx+x*sinx)/(2x*sin2x +x^2 *2cos2x)
= lim(x->0) sinx/(sin2x+x*cos2x)
= lim(x->0) cosx/(2cos2x+cos2x-2x*sin2x)
=1/3
2.
原式 = lim(x->1) (3x^2 -3)/(3x^2 -2x-1)
= lim(x->1) 6x/(6x-2)
=3/2
3.
原式 = lim(x->0) (sinx-e^x +1)/[sinx*(e^x -1)]
= lim(x->0) (cosx-e^x)/[cosx*(e^x -1)+sinx*e^x]
= lim(x->0) (-sinx-e^x)/[-sinx*(e^x -1)+2cosx*e^x+sinx*e^x]
=-1/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
lim(x->0) (tanx-x) /(x^2.sinx)
=lim(x->0) (tanx-x) /x^3 (0/0)
=lim(x->0) [(secx)^2-1 ] /(3x^2)
=lim(x->0) (tanx)^2 /(3x^2)
=lim(x->0) x^2 /(3x^2)
=1/3
(2)
lim(x->1) (x^3-3x+2)/(x^3-x^2-x+1)
=lim(x->1) (x-1)^2.(x+2)/[ (x-1)^2.(x+1)]
=lim(x->1) (x+2)/(x+1)
=3/2
(3)
lim(x->0) [1/(e^x-1) -1/sinx ]
=lim(x->0) (sinx-e^x+1 )/[ sinx.(e^x-1)]
=lim(x->0) (sinx-e^x+1 )/ x^2 (0/0)
=lim(x->0) (cosx-e^x )/ (2x) (0/0)
=lim(x->0) (-sinx-e^x )/ 2
=-1/2
lim(x->0) (tanx-x) /(x^2.sinx)
=lim(x->0) (tanx-x) /x^3 (0/0)
=lim(x->0) [(secx)^2-1 ] /(3x^2)
=lim(x->0) (tanx)^2 /(3x^2)
=lim(x->0) x^2 /(3x^2)
=1/3
(2)
lim(x->1) (x^3-3x+2)/(x^3-x^2-x+1)
=lim(x->1) (x-1)^2.(x+2)/[ (x-1)^2.(x+1)]
=lim(x->1) (x+2)/(x+1)
=3/2
(3)
lim(x->0) [1/(e^x-1) -1/sinx ]
=lim(x->0) (sinx-e^x+1 )/[ sinx.(e^x-1)]
=lim(x->0) (sinx-e^x+1 )/ x^2 (0/0)
=lim(x->0) (cosx-e^x )/ (2x) (0/0)
=lim(x->0) (-sinx-e^x )/ 2
=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询