求lim(x→∞)x(sin2x)/(x^2+1)的极限

 我来答
轮看殊O
高粉答主

2021-08-05 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:739万
展开全部

lim(x→∞) xsinxsin1/x^2


=lim(x→∞) (1/x)sinx[sin1/x^2]/[1/x^2]


=lim(x→∞) (1/x)sinx


=0

求极限基本方法有:



1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;



2、无穷大根式减去无穷大根式时,分子有理化




3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。

小茗姐姐V
高粉答主

2018-10-08 · 关注我不会让你失望
知道大有可为答主
回答量:4.7万
采纳率:75%
帮助的人:6889万
展开全部

如下

追问
能利用等价无穷小算吗,谢谢
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
旅游小达人Ky
高粉答主

2021-01-26 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1893
采纳率:100%
帮助的人:38.4万
展开全部

lim(x→∞) xsinxsin1/x^2

=lim(x→∞) (1/x)sinx[sin1/x^2]/[1/x^2]

=lim(x→∞) (1/x)sinx

=0

扩展资料

极限思想的进一步发展是与微积分的建立紧密相联系的。16世纪的欧洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中遇到大量的问题。

开始人们只用初等数学的方法已无法解决,要求数学突破’只研究常量‘的传统范围,而寻找能够提供能描述和研究运动、变化过程的新工具,是促进’极限‘思维发展、建立微积分的社会背景。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2022-02-13 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1579万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
罗罗77457
高粉答主

2018-10-08 · 说的都是干货,快来关注
知道大有可为答主
回答量:6.9万
采纳率:81%
帮助的人:9673万
展开全部

2

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式