一道高数题,求解答
一题高数里面,需要x对a求导。我对两种不同化解形式的x求导,最后为什么结果会不一样?求解想不明白,是我哪里错了吗算错了,抱歉,不用麻烦各位了...
一题高数里面,需要x对a求导。我对两种不同化解形式的x求导,最后为什么结果会不一样?求解想不明白,是我哪里错了吗
算错了,抱歉,不用麻烦各位了 展开
算错了,抱歉,不用麻烦各位了 展开
1个回答
展开全部
解:(1) f(x)=m·e的x次方-lnx
f'(x)=m·e的x次方-1/x
∵ 其极值点就是导数为零的点
∴ f'(x)=m·e的x次方-1/x=0
f'(1)=m·e -1 =0
∴ m=1/e
∴ f(x)=1/e·e的x次方-lnx=·e的x-1次方-lnx
f(x)= e的x-1次方-lnx
∴ 当x>1 f'(x)>0 函数为增函数。
当0<x<1 f'(x)<0 函数为减函数。
当 x<0 f'(x)<0 函数为减函数。
其中0为间断点。
(2) f(x)=m·e的x次方-lnx
当 m≥1/e2 时 ∵ f(x)=m·e的x次方-lnx
∴ m·e的x次方-lnx ≥1/e2 ·e的x次方-lnx
∴ f(x)≥1/e2 ·e的x次方-lnx =e的x-2次方-lnx
f(x)≥e的x-2次方-lnx
从图像 看 f(x)=e的x-2次方
f(x)=lnx
以上两个图像永远不相交,并且f(x)=e的x-2次方永远在 f(x)=lnx的上方。
∴ e的x-2次方-lnx >0 ∴ f(x)>0
f'(x)=m·e的x次方-1/x
∵ 其极值点就是导数为零的点
∴ f'(x)=m·e的x次方-1/x=0
f'(1)=m·e -1 =0
∴ m=1/e
∴ f(x)=1/e·e的x次方-lnx=·e的x-1次方-lnx
f(x)= e的x-1次方-lnx
∴ 当x>1 f'(x)>0 函数为增函数。
当0<x<1 f'(x)<0 函数为减函数。
当 x<0 f'(x)<0 函数为减函数。
其中0为间断点。
(2) f(x)=m·e的x次方-lnx
当 m≥1/e2 时 ∵ f(x)=m·e的x次方-lnx
∴ m·e的x次方-lnx ≥1/e2 ·e的x次方-lnx
∴ f(x)≥1/e2 ·e的x次方-lnx =e的x-2次方-lnx
f(x)≥e的x-2次方-lnx
从图像 看 f(x)=e的x-2次方
f(x)=lnx
以上两个图像永远不相交,并且f(x)=e的x-2次方永远在 f(x)=lnx的上方。
∴ e的x-2次方-lnx >0 ∴ f(x)>0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询