数学证明题怎么做
2个回答
展开全部
以下采用代数法来解答这个问题。
为了计算方便,不妨设BD=2,CD=4,BC=2a, AB=b,
【1】先算出a与b的关系式
根据等腰三角形性质,cosB=a/b
又,在ΔDBC中,利用余弦定理得,cosB=(BD²+BC²-CD²)/2BD*BC=(a²-3)/2a
则,a/b=(a²-3)/2a,即:
b=2a²/(a²-3)
b-2=6/(a²-3)
【2】用a、b表达出cos∠ADE
在ΔDBC中,利用余弦定理得,cos∠ADE=-(BD²+CD²-BC²)/2BD*CD=(a²-5)/4
【3】转化命题,并进行证明
延长ED至F,使得DF=DA,连接AF
则∠ADE=2∠F,如果能证明∠F=∠AED,则命题得证
也就是要证明AF=AE
令∠ADE=γ
在ΔADF中,利用余弦定理得,
AF²=2AD²-2AD²cos∠ADF=2AD²+2AD²cos∠ADE
=2(b-2)²(1+cosγ)=2*36/(a²-3)² *(1+(a²-5)/4)
=18(a²-1)/(a²-3)²
在ΔADE中,利用余弦定理得,
AE²=AD²+DE²-2AD*DE*cos∠ADE
=(b-2)²+9-6(b-2)cosγ=(b-2)(b-2-6cosγ)+9
=6/(a²-3)[6/(a²-3)-3(a²-5)/2]+9
=18[2-(a²-3)(a²-5)/2]/(a²-3)²+9
=9[4-(a²-3)(a²-5)]/(a²-3)²+9
=9(4-a^4+8a²-15)/(a²-3)²+9
=9[(-a^4+8a²-11)/(a²-3)²+1]
=9[(a²-3)²-a^4+8a²-11]/(a²-3)²
=9[a^4-6a²+9-a^4+8a²-11]/(a²-3)²
=9(2a²-2)/(a²-3)²
=18(a²-1)/(a²-3)²
显然,AF=AE
故,命题得证
为了计算方便,不妨设BD=2,CD=4,BC=2a, AB=b,
【1】先算出a与b的关系式
根据等腰三角形性质,cosB=a/b
又,在ΔDBC中,利用余弦定理得,cosB=(BD²+BC²-CD²)/2BD*BC=(a²-3)/2a
则,a/b=(a²-3)/2a,即:
b=2a²/(a²-3)
b-2=6/(a²-3)
【2】用a、b表达出cos∠ADE
在ΔDBC中,利用余弦定理得,cos∠ADE=-(BD²+CD²-BC²)/2BD*CD=(a²-5)/4
【3】转化命题,并进行证明
延长ED至F,使得DF=DA,连接AF
则∠ADE=2∠F,如果能证明∠F=∠AED,则命题得证
也就是要证明AF=AE
令∠ADE=γ
在ΔADF中,利用余弦定理得,
AF²=2AD²-2AD²cos∠ADF=2AD²+2AD²cos∠ADE
=2(b-2)²(1+cosγ)=2*36/(a²-3)² *(1+(a²-5)/4)
=18(a²-1)/(a²-3)²
在ΔADE中,利用余弦定理得,
AE²=AD²+DE²-2AD*DE*cos∠ADE
=(b-2)²+9-6(b-2)cosγ=(b-2)(b-2-6cosγ)+9
=6/(a²-3)[6/(a²-3)-3(a²-5)/2]+9
=18[2-(a²-3)(a²-5)/2]/(a²-3)²+9
=9[4-(a²-3)(a²-5)]/(a²-3)²+9
=9(4-a^4+8a²-15)/(a²-3)²+9
=9[(-a^4+8a²-11)/(a²-3)²+1]
=9[(a²-3)²-a^4+8a²-11]/(a²-3)²
=9[a^4-6a²+9-a^4+8a²-11]/(a²-3)²
=9(2a²-2)/(a²-3)²
=18(a²-1)/(a²-3)²
显然,AF=AE
故,命题得证
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
校园那点事:数学证明题无非两种,一种是“卧槽这还用证明”,另一种是“卧槽这也能证明”。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |