高等数学大一的

 我来答
sjh5551
高粉答主

2019-01-04 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:7922万
展开全部
分子分母同乘以 √(1+tanx)+√(1+sinx) 得
原式 = lim<x→0>(tanx-sinx)/{x^3[√(1+tanx)+√(1+sinx)]}
= lim<x→0>tanx(1-cosx)/(2x^3) = 1/4
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
龟龟快跑5173
2019-01-04 · TA获得超过536个赞
知道小有建树答主
回答量:1729
采纳率:65%
帮助的人:208万
展开全部
首先要理清高数总体的知识框架。高数的主体是微积分。微积分分为微分学和积分学两部分,微分学和积分学的基础和核心思想都是极限,极限的思想是贯穿于始终的,所以首先要掌握极限的定义。微分学的中心问题是求导问题,反映在几何上就是切线问题,求导也就是求函数变化率的极限,所以一定要掌握和理解导数的定义;积分学的中心问题是求积问题,求积是求导的逆过程,难度比微分学要大,积分分为不定积分和定积分,值得注意的是,不定积分和定积分的定义并不相同,但是定积分可以通过不定积分的算法来求解。微积分中的难点是复合函数的求导和求积问题,也就是换元思想的应用,需要多做题来更好的理解。然后要弄清微积分的考点,这样会更有针对性,比如等价无穷小替换,求极限,连续,间断,分断函数分断点处导数的求法,高阶导数,洛必达法则,最值问题(求一阶导数),凹凸问题(求二阶导数),用换元法和分部积分法求积分等。课本一定要多看几遍,每一遍都肯定能有新的收获。
追问
怎么算呢,洛必达法则?还是无穷小代换,没让你搞其他,我要计算过程,不知道就别乱回答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式