2个回答
展开全部
∫ (x+1)/(3x+1)^(1/3) dx
= (1/2)∫ (x+1) d(3x+1)^(2/3)
= (1/2)(x+1).(3x+1)^(2/3) - (1/2)∫ (3x+1)^(2/3) dx
= (1/2)(x+1).(3x+1)^(2/3) - (1/6)∫ (3x+1)^(2/3) d(3x+1)
= (1/2)(x+1).(3x+1)^(2/3) - (1/10)(3x+1)^(5/3) + C
= (1/2)∫ (x+1) d(3x+1)^(2/3)
= (1/2)(x+1).(3x+1)^(2/3) - (1/2)∫ (3x+1)^(2/3) dx
= (1/2)(x+1).(3x+1)^(2/3) - (1/6)∫ (3x+1)^(2/3) d(3x+1)
= (1/2)(x+1).(3x+1)^(2/3) - (1/10)(3x+1)^(5/3) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询