5个回答
展开全部
原式 = (1/3)∫arctanxdx^3 = (1/3)x^3arctanx - (1/3)∫[x^3/(1+x^2)]dx
= (1/3)x^3arctanx - (1/3)∫[(x^3+x-x)/(1+x^2)]dx
= (1/3)x^3arctanx - (1/3)∫[(x-x/(1+x^2)]dx
= (1/3)x^3arctanx - (1/6)x^2 + (1/6)ln(1+x^2) + C
= (1/3)x^3arctanx - (1/3)∫[(x^3+x-x)/(1+x^2)]dx
= (1/3)x^3arctanx - (1/3)∫[(x-x/(1+x^2)]dx
= (1/3)x^3arctanx - (1/6)x^2 + (1/6)ln(1+x^2) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询