学python能做什么?
一、常规软件开发
支持函数式编程和OOP面向对象编程,能够承担任何种类软件的开发工作,因此常规的软件开发、脚本编写、网络编程等都属于标配能力。
二、科学计算
随着NumPy, SciPy, Matplotlib, Enthought librarys等众多程序库的开发,Python越来越适合于做科学计算、绘制高质量的2D和3D图像。是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛,有更多的程序库的支持。虽然Matlab中的许多高级功能和toolbox目前还是无法替代的,不过在日常的科研开发之中仍然有很多的工作是可以用Python代劳的。
三、人工智能
在人工智能大范畴领域内的机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。
四、WEB开发
基于Python的Web开发框架不要太多,比如耳熟能详的Django,还有Tornado,Flask。其中的Python+Django架构,应用范围非常广,开发速度非常快,学习门槛也很低,能够帮助你快速搭建起可用的WEB服务。
五、网络爬虫
也称网络蜘蛛,是大数据行业获取数据的核心工具。没有网络爬虫自动地、不分昼夜地、高智能地在互联网上爬取免费的数据,那些大数据相关的公司恐怕要少四分之三。能够编写网络爬虫的编程语言有不少,但Python绝对是其中的主流之一,其Scripy爬虫框架应用非常广泛。
六、数据分析
在大量数据的基础上,结合科学计算、机器学习等技术,对数据进行清洗、去重、规格化和针对性的分析是大数据行业的基石。Python是数据分析的主流语言之一。
2021-10-12 · 每时每课,给你新机会!
学习python主要是自学或者报班学习的方式,但不建议自学。
如果想通过学习python改行,那就需要明确一下自己的方向。因为python编程有很多方向,有网络爬虫、数据分析、Web开发、测试开发、运维开发、机器学习、人工智能、量化交易等等,各个方向都有特定的技能要求。
想学的话,当然是可以学习的。python是一门语法优美的编程语言,不仅可以作为小工具使用提升我们日常工作效率,也可以单独作为一项高新就业技能!
python可以做的事情:
软件开发:用python做软件是很多人正在从事的工作,不管是B/S软件,还是C/S软件,都能做。并且需求量还是挺大的;
数据挖掘:python可以制作出色的爬虫工具来进行数据挖掘,而在很多的网络公司中数据挖掘的岗位也不少;
游戏开发:python扩展性很好,拥有游戏开发的库,而且游戏开发绝对是暴力职业;
大数据分析:如今是大数据的时代,用python做大数据也是可以的,大数据分析工程师也是炙手可热的职位;
全栈工程师:如今程序员都在向着全栈的方向发展,而学习python更具备这方面的优势;
系统运维:python在很多linux中都支持,而且语法特点很向shell脚本,学完python做个系统运维也是很不错的。
互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
1.爬虫:
相信大部分人都用Python爬过数据,目前来说,比较流行的框架是scrapy,对爬取数据来说,简单方便了不少,只需要自己添加少量的代码,框架便可启动开始爬取,当然,还有简单地爬虫包,像requests+BeautifulSoup,对于爬取简单网页来说,也足够了:
如果你想要学好Python最好加入一个好的学习环境,可以来这个Q群,首先是629,中间是440,最后是234,这样大家学习的话就比较方便,还能够共同交流和分享资料
2.数据处理:
numpy,scipy,pandas这些包对于处理数据来说非常方便,线性代数、科学计算等,利用numpy处理起来非常方便,pandas提供的DataFrame类可以方便的处理各种类型的文件,像excel,csv等,是分析数据的利器:
3.可视化:
这里的包其实也挺多的,除了我们常用的matplotlib外,还有seaborn,pyecharts等,可以绘制出各种各样类型的图形,除了常见的线图、饼图和柱状图外,还可以绘制出地图、词云图、地理坐标系图等,美观大方,所需的代码量还少,更容易上手:
4.机器学习:
说起python机器学习,大部分人都应该scikit-learn这个包,常见的机器学习算法,像回归、分类、聚类、降维、模型选择等,这里都有现成的代码可供利用,对于这机器学习方面感兴趣的人来说,这是一个入门机器学习的好包:
5.神经网络:
说起神经网络,大部分人都应该会想起深度学习,对应的就会想到谷歌目前非常流行的深度学习框架—tensorflow,tesndorflow可被用于语音识别和图像识别等众多领域,其发展前景光明,对于这方面感兴趣的科研人员来说,是一个很不错的工具,当然,还有基于tensorflow的theano,keras等,都是学习神经网络的不错选择:
6.股票财经:
对于股票和财经比较感兴趣的朋友来说,python也提供了现成的库来获取和分析股票财经数据—tushare,tushare是一个免费、开源的python财经数据接口包,可以快速的获取到国内大部分股票数据,对于金融分析人员来说,可以说是一个利器,降低了许多任务量:
7.游戏:
Python专门为游戏开发提供了一个平台—Pygame,对于想快速开发小型游戏的用户来说,是一个很不错的选择,简单易学、容易上手,脱离了低级语言的束缚,使用起来也挺方便的:
目前就介绍这7个方面和对应的包,比较流行也比较实用、有趣,感兴趣的朋友,可以了解一下,希望以上分享的内容能对你有所帮助吧。
2019-08-21 · 百度认证:北京一天天教育科技有限公司官方账号,教育领域创作者