高等数学定积分求解
3个回答
展开全部
3、令x=sint,则dx=costdt
原式=∫(0,π/2) cos^2tdt
=(1/2)*∫(0,π/2) (1+cos2t)dt
=(1/2)*[t+(1/2)*sin2t]|(0,π/2)
=π/4
4、令x=sint,则dx=costdt
原式=∫(0,π/2) sintcos^2tdt
=-∫(0,π/2) cos^2td(cost)
=-(1/3)*cos^3t|(0,π/2)
=1/3
原式=∫(0,π/2) cos^2tdt
=(1/2)*∫(0,π/2) (1+cos2t)dt
=(1/2)*[t+(1/2)*sin2t]|(0,π/2)
=π/4
4、令x=sint,则dx=costdt
原式=∫(0,π/2) sintcos^2tdt
=-∫(0,π/2) cos^2td(cost)
=-(1/3)*cos^3t|(0,π/2)
=1/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |