大学高数求解

 我来答
冼初之0I6
2018-11-28 · TA获得超过3036个赞
知道大有可为答主
回答量:4178
采纳率:91%
帮助的人:1498万
展开全部


如图

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2018-11-28 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
let
x= asinu
dx=acosu du
∫√(a^2-x^2)/x^4 dx
=(1/a^2)∫ (cosu)^2/(sinu)^4 du
=(1/a^2)∫ [1-(sinu)^2]/(sinu)^4 du
=(1/a^2)∫ [ (cscu)^4 - (cscu)^2 ] du
=(1/a^2)∫ (cscu)^4 du - (1/a^2)∫ (cscu)^2 du
=-(1/a^2)∫ (cscu)^2 d(cotu) + (1/a^2)cotu
=-(1/a^2)∫ [(cotu)^2 +1 ] d(cotu) + (1/a^2)cotu
=-(1/a^2) [ (1/3)(cotu)^3 +cotu ] + (1/a^2)cotu + C
=-[1/(3a^2)] (cotu)^3 + C
=-[1/(3a^2)] [√(a^2-x^2)/x ]^3 + C
追问
🤝
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一片树叶的故事
2018-11-28 · TA获得超过1185个赞
知道小有建树答主
回答量:4490
采纳率:78%
帮助的人:191万
展开全部
建议看书上的例题,会很有帮助,上学期学的知识忘了😂
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式