什么是“导数”,什么又是“函数的连续性”?
2个回答
展开全部
一 导数
1、导数的定义
设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率.
如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即
函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导.
2、求导数的方法
由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法:
(1)求函数的增量△y=f(x0+△x)-f(x0);
(2)求平均变化率;
(3)取极限,得导数
3、导数的几何意义
函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0).
相应地,切线方程为y-y0=
f′(x0)(x-x0).
二
连续函数,在数学中是指这样的一个函数,即对于输入的任意小的变化产生输出的任意小的变化。如果输入的微小的变化会产生输出的变化的一个突然的跳跃,则这个函数被称为是不连续的(或者说具有不连续性)。
对于实值连续函数
假设我们有一个从实数到实数的映射,并且定义在某个区间上,如同上面提到的h,T
和M。
这类函数可以用笛卡尔坐标系中的图来表示。这个函数是连续的如果,粗略地说,它的图为一个单一的不破的曲线,并且没有空洞和跳跃(如果可以用手单笔画成(铅笔不离开纸张))。
精确地说,我们说函数f
在某个点c
处是连续的当以下的两个条件满足:
f(c)
必须是可定义的(即,c
必须是函数f
的定义域中的元)。
如果c
是定义域中的一个聚点,则x
接近c
时f(x)
的极限存在且等于f(c)。
我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。
1、导数的定义
设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率.
如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即
函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导.
2、求导数的方法
由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法:
(1)求函数的增量△y=f(x0+△x)-f(x0);
(2)求平均变化率;
(3)取极限,得导数
3、导数的几何意义
函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0).
相应地,切线方程为y-y0=
f′(x0)(x-x0).
二
连续函数,在数学中是指这样的一个函数,即对于输入的任意小的变化产生输出的任意小的变化。如果输入的微小的变化会产生输出的变化的一个突然的跳跃,则这个函数被称为是不连续的(或者说具有不连续性)。
对于实值连续函数
假设我们有一个从实数到实数的映射,并且定义在某个区间上,如同上面提到的h,T
和M。
这类函数可以用笛卡尔坐标系中的图来表示。这个函数是连续的如果,粗略地说,它的图为一个单一的不破的曲线,并且没有空洞和跳跃(如果可以用手单笔画成(铅笔不离开纸张))。
精确地说,我们说函数f
在某个点c
处是连续的当以下的两个条件满足:
f(c)
必须是可定义的(即,c
必须是函数f
的定义域中的元)。
如果c
是定义域中的一个聚点,则x
接近c
时f(x)
的极限存在且等于f(c)。
我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询