线形代数中伴随矩阵怎么求?
1个回答
展开全部
1、当矩阵是大于等于二阶时:
主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 (-1)^(x+y),x ,y 为该元素的共轭位置的元素的行和列的序号,序号从1开始。
主对角元素实际上是非主对角元素的特殊情况,因为 x=y ,所以 (-1)^(x+y)=1,一直是正数,没必要考虑主对角元素的符号问题。
2、当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。
3、二阶矩阵的求法口诀:主对角线元素互换,副对角线元素变号。
扩展资料:
伴随矩阵的性质
1、[(A*)*][A*]=|A*|
2、[(A*)*][A*]A=|A*|A
3、[(A*)*]|A|=|A*|A
4、[(A*)*]|A|=[|A*|^(-1)]A
5、[(A*)*]=[|A*|^(-2)]A
6、[AT][(A*)T]=[(A*)A]T=|A|ET=|A|E
7、[(AT)*]AT=|AT|E=|A|E
参考资料来源:百度百科-伴随矩阵
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询