5个回答
展开全部
(7)I = ∫<0, π/2>x^2cosxdx + ∫<π/2, π>x^2(-cosx)dx
= ∫<0, π/2>x^2dsinx - ∫<π/2, π>x^2dsinx
因 ∫x^2dsinx = x^2sinx - ∫2xsinxdx = x^2sinx + ∫2xdcosx
= x^2sinx + 2xcosx - 2∫cosxdx = x^2sinx + 2xcosx - 2sinx
则 I = [x^2sinx + 2xcosx - 2sinx]<0, π/2> - [x^2sinx + 2xcosx - 2sinx]<π/2, π>
= π^2/4-2 - (-2π - π^2/4 + 2) = π^2/2 + 2π - 4
= ∫<0, π/2>x^2dsinx - ∫<π/2, π>x^2dsinx
因 ∫x^2dsinx = x^2sinx - ∫2xsinxdx = x^2sinx + ∫2xdcosx
= x^2sinx + 2xcosx - 2∫cosxdx = x^2sinx + 2xcosx - 2sinx
则 I = [x^2sinx + 2xcosx - 2sinx]<0, π/2> - [x^2sinx + 2xcosx - 2sinx]<π/2, π>
= π^2/4-2 - (-2π - π^2/4 + 2) = π^2/2 + 2π - 4
追问
答案不是派
追答
题目抄错,已更改。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫ x^2.cosx dx
=∫ x^2 dsinx
=x^2.sinx -2∫ xsinx dx
=x^2.sinx +2∫ x dcosx
=x^2.sinx +2x.cosx -2∫ cosx dx
=x^2.sinx +2x.cosx -2sinx +C
∫(0->π) x^2.|cosx| dx
=∫(0->π/2) x^2.cosx dx - ∫(π/2->π) x^2.cosx dx
=[x^2.sinx +2x.cosx -2sinx]|(0->π/2) -[x^2.sinx +2x.cosx -2sinx]|(π/2->π)
=[(π/2)^2 -2 ] +[ (π/2)^2 -2 ]
=(1/2)π^2 - 4
=∫ x^2 dsinx
=x^2.sinx -2∫ xsinx dx
=x^2.sinx +2∫ x dcosx
=x^2.sinx +2x.cosx -2∫ cosx dx
=x^2.sinx +2x.cosx -2sinx +C
∫(0->π) x^2.|cosx| dx
=∫(0->π/2) x^2.cosx dx - ∫(π/2->π) x^2.cosx dx
=[x^2.sinx +2x.cosx -2sinx]|(0->π/2) -[x^2.sinx +2x.cosx -2sinx]|(π/2->π)
=[(π/2)^2 -2 ] +[ (π/2)^2 -2 ]
=(1/2)π^2 - 4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询