标准正态分布与t分布有何异同
一、意义不同
t分布是依自由度而变的一组曲线。
二、形态不同:
t分布较正态分布顶部略低而尾部稍高。
三、作用不同:
与正态分布相比,t分布曲线中间低而尖峭,两头高而平缓。t分布的最大特点是它实质上是一族分布,每一个t分布的形态受一个称为自由度的指标所制约。
对应一个自由度就有一个t分布,随着自由度的增大,t分布曲线的中间就越来越高,两头却越来越低,整条曲线越来越趋近于正态分布,当自由度接近无穷大时,t分布就变成了正态分布。
扩展资料
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
参考资料来源:百度百科-正态分布
标准正态分布与t分布曲线是不同的。具体如下:
一、联系
1、随看自由度增大t分布趋近于标准正态分布。
2、当n>30时二者相差很小。
二、当n→∞时二者重合区别
1、正态分布是与自由度无关的一条曲线,而t分布是依自由度而变的一组曲线。
2、t分布较正态分布顶部略低而尾部稍高。
正态分布综合素质研究
教育统计学统计规律表明,学生的智力水平,包括学习能力,实际动手能力等呈正态分布。因而正常的考试成绩分布应基本服从正态分布。
考试分析要求绘制出学生成绩分布的直方图,以“中间高、两头低”来衡量成绩符合正态分布的程度。其评价标准认为:考生成绩分布情况直方图,基本呈正态曲线状,属于好,如果略呈正(负)态状,属于中等,如果呈严重偏态或无规律,就是差的。
以上资料参考 百度百科—正态分布
一、意义不同
正态分布是与自由度无关的一条曲线
t分布是依自由度而变的一组曲线。
二、形态不同:
t分布较正态分布顶部略低而尾部稍高。
三、作用不同:
与正态分布相比,t分布曲线中间低而尖峭,两头高而平缓。t分布的最大特点是它实质上是一族分布,每一个t分布的形态受一个称为自由度的指标所制约。
对应一个自由度就有一个t分布,随着自由度的增大,t分布曲线的中间就越来越高,两头却越来越低,整条曲线越来越趋近于正态分布,当自由度接近无穷大时,t分布就变成了正态分布。
扩展资料:
集中性:正态曲线的高峰位于正中央,即均数所在的位置。
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
参考资料来源:百度百科-正态分布
与正态分布相比,t分布曲线中间低而尖峭,两头高而平缓。t分布的最大特点是它实质上是一族分布,每一个t分布的形态受一个称为自由度的指标所制约。对应一个自由度就有一个t分布,随着自由度的增大,t分布曲线的中间就越来越高,两头却越来越低,整条曲线越来越趋近于正态分布,当自由度接近无穷大时,t分布就变成了正态分布。
区别:①正态分布是与自由度无关的一条曲线
t分布是依自由度而变的一组曲线。
②
t分布较正态分布顶部略低而尾部稍高。