这道积分题应该怎么算?求过程
1个回答
展开全部
令A=∫(0,+∞) e^(-k^2*x^2)dx
则A^2=∫(0,+∞) e^(-k^2*x^2)dx*∫(0,+∞) e^(-k^2*y^2)dy
=∫∫(D) e^[-k^2*(x^2+y^2)]dxdy,其中D是第一象限
令x=rcost,y=rsint,则
A^2=∫(0,π/2)dt*∫(0,+∞) e^(-k^2*r^2)*rdr
=(π/2)*(-1/2k^2)*∫(0,+∞) e^(-k^2*r^2)d(-k^2*r^2)
=(-π/4k^2)*e^(-k^2*r^2)|(0,+∞)
=π/4k^2
因为A恒大于0,所以A=(√π)/(2k)
(1)2k^2*∫(0,+∞) x^2*e^(-k^2*x^2)dx
=-∫(0,+∞) x*d[e^(-k^2*x^2)]
=-x*e^(-k^2*x^2)|(0,+∞)+∫(0,+∞) e^(-k^2*x^2)dx
=0+A
=(√π)/(2k)
(2)2k^2*∫(0,+∞) x^3*e^(-k^2*x^2)dx
=-∫(0,+∞) x^2*d[e^(-k^2*x^2)]
=-x^2*e^(-k^2*x^2)|(0,+∞)+∫(0,+∞) e^(-k^2*x^2)d(x^2)
=0+(-1/k^2)*e^(-k^2*x^2)|(0,+∞)
=1/k^2
则A^2=∫(0,+∞) e^(-k^2*x^2)dx*∫(0,+∞) e^(-k^2*y^2)dy
=∫∫(D) e^[-k^2*(x^2+y^2)]dxdy,其中D是第一象限
令x=rcost,y=rsint,则
A^2=∫(0,π/2)dt*∫(0,+∞) e^(-k^2*r^2)*rdr
=(π/2)*(-1/2k^2)*∫(0,+∞) e^(-k^2*r^2)d(-k^2*r^2)
=(-π/4k^2)*e^(-k^2*r^2)|(0,+∞)
=π/4k^2
因为A恒大于0,所以A=(√π)/(2k)
(1)2k^2*∫(0,+∞) x^2*e^(-k^2*x^2)dx
=-∫(0,+∞) x*d[e^(-k^2*x^2)]
=-x*e^(-k^2*x^2)|(0,+∞)+∫(0,+∞) e^(-k^2*x^2)dx
=0+A
=(√π)/(2k)
(2)2k^2*∫(0,+∞) x^3*e^(-k^2*x^2)dx
=-∫(0,+∞) x^2*d[e^(-k^2*x^2)]
=-x^2*e^(-k^2*x^2)|(0,+∞)+∫(0,+∞) e^(-k^2*x^2)d(x^2)
=0+(-1/k^2)*e^(-k^2*x^2)|(0,+∞)
=1/k^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询