AB是⊙O的直径,AC是弦∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于F
1个回答
展开全部
连接OD,OD=OA,∠OAD=∠ODA;
作OG⊥AC,交AC于G,则AG=GC=AC/2,(△OGA≌△OGC,SSA证明略);
DE⊥AC,
所以OG‖DE;
AD为∠BAC的平分线,∠BAC=2∠DAC=2∠OAD=2∠ODA,
因为∠BOD=∠OAD+∠ODA=2∠OAD,
所以∠BOD=∠BAC,
故OD‖AE;
∠DAC+∠ADE=90度
∠ODA+∠ADE=90度
因此OGED为矩形,
GE=OD=AB/2,
△OFD∽△EFA,(AAA)
AE:DO=AF:DF
AF:DF=(AG+GE):(AB/2)=(AC/2+AB/2):(AB/2)=AC:AB+1=3:5+1=8:5
作OG⊥AC,交AC于G,则AG=GC=AC/2,(△OGA≌△OGC,SSA证明略);
DE⊥AC,
所以OG‖DE;
AD为∠BAC的平分线,∠BAC=2∠DAC=2∠OAD=2∠ODA,
因为∠BOD=∠OAD+∠ODA=2∠OAD,
所以∠BOD=∠BAC,
故OD‖AE;
∠DAC+∠ADE=90度
∠ODA+∠ADE=90度
因此OGED为矩形,
GE=OD=AB/2,
△OFD∽△EFA,(AAA)
AE:DO=AF:DF
AF:DF=(AG+GE):(AB/2)=(AC/2+AB/2):(AB/2)=AC:AB+1=3:5+1=8:5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询