高数,这个泰勒公式是按什么展开的,然后x取什么值?看不太懂
2个回答
展开全部
泰勒公式是高数中较难理解的公式,我们要注意其是用高次多项式来近似表达函数。
在泰勒中值定理中有一个项是为其近似而存在的,f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+rn即为rn
而拉格朗日型余项将rn写成(x-x0)的一个高阶无穷小即可。
麦克劳林展开式:f(x)=f(0)+f'(0)x+f''(0)/2!•x^2,+f'''(0)/3!•x^3+……+f(n)(0)/n!•x^n+rn;其中rn为f(n+1)(θx)/(n+1)!•x^(n+1),
当你知道一个函数要运用它那也可以套公式。不能理解的话就做作业会从中得到说不出的理解!
祝你好运!
在泰勒中值定理中有一个项是为其近似而存在的,f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+rn即为rn
而拉格朗日型余项将rn写成(x-x0)的一个高阶无穷小即可。
麦克劳林展开式:f(x)=f(0)+f'(0)x+f''(0)/2!•x^2,+f'''(0)/3!•x^3+……+f(n)(0)/n!•x^n+rn;其中rn为f(n+1)(θx)/(n+1)!•x^(n+1),
当你知道一个函数要运用它那也可以套公式。不能理解的话就做作业会从中得到说不出的理解!
祝你好运!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询