可降阶的高阶微分方程里 介绍了一种方法 在y''=f(x)的两端乘上2y'
2个回答
展开全部
一楼道理是对的,说的可能简单了些,以下是更详细的解释
说白了全部都是链式法则
[f(g(x))]'=f'(g(x))*g'(x)
(此处f'(g(x))的意思是先求f'(z),再把z=g(x)代入)
构造y'*y''的原因是
(y')^2=g(h(x)),此处g(z)=z^2,h(x)=y'(x)
所以由链式法则
注意g'(z)=2z
[(y')^2]'
=[g(h(x))]'
=g'(h(x))
*h'(x)
=2h(x)*h'(x)
=2*y'(x)*y''(x)
而
注意y=y(x)
[F(y)]=F(y(x))
由链式法则
[F(y)]‘=F'(y(x))*y'(x)
由原函数定义,F'(z)=f(z)
所以
[F(y)]‘=F'(y(x))*y'(x)
=f(y)*y'
其实都是逆向思维,凑微分
如有疑问请追问
说白了全部都是链式法则
[f(g(x))]'=f'(g(x))*g'(x)
(此处f'(g(x))的意思是先求f'(z),再把z=g(x)代入)
构造y'*y''的原因是
(y')^2=g(h(x)),此处g(z)=z^2,h(x)=y'(x)
所以由链式法则
注意g'(z)=2z
[(y')^2]'
=[g(h(x))]'
=g'(h(x))
*h'(x)
=2h(x)*h'(x)
=2*y'(x)*y''(x)
而
注意y=y(x)
[F(y)]=F(y(x))
由链式法则
[F(y)]‘=F'(y(x))*y'(x)
由原函数定义,F'(z)=f(z)
所以
[F(y)]‘=F'(y(x))*y'(x)
=f(y)*y'
其实都是逆向思维,凑微分
如有疑问请追问
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询