解方程:(x+1)(x+2)(x+3)(x+4)-8=0
1个回答
展开全部
(x+1)(x+2)(x+3)(x+4)-8=0
解:
【(x+1)(x+4)】【(x+2)(x+3)】-8=0
(x²
+
5x
+4)(x²
+
5x
+
6)-
8
=0
设:a
=
x²
+
5x
所以
(a
+
4)(a
+
6)-
8
=
0
a²
+
10a
+
24
-
8
=
0
a²
+
10a
+
16
=
0
(a
+
2)(a
+
8)
=
0
所以
a
+
2
=
0
或
a
+
8
=
0
因为a
= x²
+
5x
所以
x²
+
5x
+
2
=
0①
x²
+
5x
+
8
=
0②
由①得,x
=
(-5±
√17
)/2
由②得△=25-4×8=-7<0,方程无解,
综合得:原方程的解为
x
=
(-5±
√17
)/2
解:
【(x+1)(x+4)】【(x+2)(x+3)】-8=0
(x²
+
5x
+4)(x²
+
5x
+
6)-
8
=0
设:a
=
x²
+
5x
所以
(a
+
4)(a
+
6)-
8
=
0
a²
+
10a
+
24
-
8
=
0
a²
+
10a
+
16
=
0
(a
+
2)(a
+
8)
=
0
所以
a
+
2
=
0
或
a
+
8
=
0
因为a
= x²
+
5x
所以
x²
+
5x
+
2
=
0①
x²
+
5x
+
8
=
0②
由①得,x
=
(-5±
√17
)/2
由②得△=25-4×8=-7<0,方程无解,
综合得:原方程的解为
x
=
(-5±
√17
)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询