(1+x)^1/n减一的极限

一个等价无穷小的证明:x趋于0时,(1+x)^(1/n)-1等价于x/n的证明过程中,(1+x)^(1/n)-1等于一个很复杂的式子,怎么得来的?... 一个等价无穷小的证明:x趋于0时,(1+x)^(1/n)-1等价于x/n的证明过程中,(1+x)^(1/n)-1等于一个很复杂的式子,怎么得来的? 展开
 我来答
黎韶琴鹤
2019-09-20 · TA获得超过1049个赞
知道小有建树答主
回答量:1429
采纳率:100%
帮助的人:6.4万
展开全部
一般情形应该是这样的,当x→0时,有(1+x)^a-1~ax
令(1+x)^a-1=T,则(1+x)^a=T+1
两边取对数,得 aln(1+x)=ln(T+1)
因为当x→0时,有x~ln(1+x)
所以考虑
lim【x→0】[(1+x)^a-1] / ax
=lim【x→0】[(1+x)^a-1] / [aln(1+x)]
=lim【T→0】T/ln(1+T)
=1
从而有当x→0时,有(1+x)^a-1~ax,取a=1/n就是你要的结论了!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式