一元二次方程换元法

 我来答
丹的葵奎6y

2020-10-13 · TA获得超过4.1万个赞
知道大有可为答主
回答量:2.2万
采纳率:98%
帮助的人:716万
展开全部
、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.
【典例解析】
例1.用适当方法解下列方程:
(1)2x2﹣5x﹣3=0
(2)16(x+5)2﹣9=0
(3)(x2+x)2+(x2+x)=6.
例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法
(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可;
(2)用直接开平方法解一元二次方程,先将方程化为(x+5)2=,直接开方即可;
(3)设t=x2+x,将原方程转化为一元二次方程,求解即可.
解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49,
∴x===,
∴x1=3,x2=﹣;
(2)整理得,(x+5)2=,
开方得,x+5=±,
即x1=﹣4,x2=﹣5,
(3)设t=x2+x,将原方程转化为t2+t=6,
因式分解得,(t﹣2)(t+3)=0,
解得t1=2,t2=﹣3.
∴x2+x=2或x2+x=﹣3(△<0,无解),
∴原方程的解为x1=1,x2=﹣2.
例2.解方程:(1)(x+3)(x﹣1)=5
(2).
例题分析:本题主要考查了解一元二次方程的方法和解分式方程.解一元二次方程时,要注意选择合适的解题方法,这样才会达到事半功倍的效果.还要注意换元思想的应用.
(1)先去括号,将方程化为一般式,然后再运用二次三项式的因式分解法进行求解.
(2)先设x2﹣x=y,采用换元法,然后解方程即可.
解:(1)x2+2x﹣8=0,
(x+4)(x﹣2)=0
∴x1=﹣4,x2=2.
(2)设x2﹣x=y
∴原方程化为y﹣=1
∴y2﹣2=y
∴y2﹣y﹣2=0
∴(y+1)(y﹣2)=0
∴y1=﹣1,y2=2
∴x2﹣x=﹣1或x2﹣x=2
解x2﹣x=﹣1知:此方程无实数根.
解x2﹣x=2知x1=2,x2=﹣1;
∴原方程的解为:x1=2,x2=﹣1.
例3.解下列方程:
(1)2x2+5x﹣3=0
(2)(3﹣x)2+x2=9
(3)2(x﹣3)2=x(x﹣3)
(4)(x﹣1)2﹣5(x﹣1)+6=0
例题分析:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后,方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的式子的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.
(1)方程左边可以利用十字相乘法进行因式分解,因此应用因式分解法解答.
(2)先移项,然后把x2﹣9因式分解为(x+3)(x﹣3),然后再提取公因式,因式分解即可.
(3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式