高等数学,极限计算问题,这个计算过程有什么问题? 20
展开全部
可能不对。直观地看,分子上是(e-无穷小)的x次方,÷分母后是(1-无穷小)的x次方,结果不一定是1。所以原式这样的要取对数再求极限。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=1/x
y->0+
(1+y)^(1/y)
=e^{ ln[(1+y)^(1/y)] }
=e^[ ln(1+y) /y ]
=e^{ [ y -(1/2)y^2 +o(y^2)] /y }
=e^[ 1-(1/2)y +o(y)]
(1+y)^(1/y)/e
= e^[-(1/2)y +o(y)]
=1 - (1/2)y +o(y)
lim(x->+∞) [ (1+1/x)^x ]^x / e^x
=lim(x->+∞) [ (1+1/x)^x / e ]^x
=lim(y->0+) [ (1+y)^(1/y) / e ]^(1/y)
=lim(y->0+) [ 1 -(1/2)y ]^(1/y)
=e^(-1/2)
y->0+
(1+y)^(1/y)
=e^{ ln[(1+y)^(1/y)] }
=e^[ ln(1+y) /y ]
=e^{ [ y -(1/2)y^2 +o(y^2)] /y }
=e^[ 1-(1/2)y +o(y)]
(1+y)^(1/y)/e
= e^[-(1/2)y +o(y)]
=1 - (1/2)y +o(y)
lim(x->+∞) [ (1+1/x)^x ]^x / e^x
=lim(x->+∞) [ (1+1/x)^x / e ]^x
=lim(y->0+) [ (1+y)^(1/y) / e ]^(1/y)
=lim(y->0+) [ 1 -(1/2)y ]^(1/y)
=e^(-1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询