展开全部
1、先判断函数y=f(x)在区间D内是否可导(可微);
2、如果可导(可微),且x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
其他判断函数单调性的方法还有:
1、图象观察法
如上所述,在单调区间上,增函数的图象是上升的,减函数的图象是下降的。因此,在某一区间内,一直上升的函数图象对应的函数在该区间单调递增;
一直下降的函数图象对应的函数在该区间单调递减;
2、定义法
根据函数单调性的定义,在这里只阐述用定义证明的几个步骤:
①在区间D上,任取x1x2,令x1<x2;
②作差f(x1)-f(x2);
③对f(x1)-f(x2)的结果进行变形处理(通常是配方、因式分解、有理化、通分,利用公式等等);
④确定符号f(x1)-f(x2)的正负;
⑤下结论,根据“同增异减”原则,指出函数在区间上的单调性。
扩展资料:
函数单调性的应用:
利用函数单调性可以解决很多与函数相关的问题。通过对函数的单调性的研究,有助于加深对函数知识的把握和深化,将一些实际问题转化为利用函数的单调性来处理。
1、利用函数单调性求最值
求函数的最大(小)值有多种方法,但基本的方法是通过函数的单调性来判定,特别是对于小可导的连续点,开区问或无穷区问内最大(小)值的分析,一般都用单调性来判定。
2、利用函数单调性解方程
函数单调性是函数一个非常重要的性质,由于单调函数v=f(x)中x与y是一对应的,这样我们就可把复杂的方程通过适当变形转化为型如“f(x)=f(a)”方程,从而利用函数单调性解方程x=a,使问题化繁为简,而构造单调函数是解决问题的关键。
3、利用函数单调性证明不等式
首先,根据小等式的特点,构造一个单调函数;其次,判别此函数在某区问[a,b]上为单调函数;最后,由单调函数的定义得到要证明的小等式。
2、如果可导(可微),且x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
其他判断函数单调性的方法还有:
1、图象观察法
如上所述,在单调区间上,增函数的图象是上升的,减函数的图象是下降的。因此,在某一区间内,一直上升的函数图象对应的函数在该区间单调递增;
一直下降的函数图象对应的函数在该区间单调递减;
2、定义法
根据函数单调性的定义,在这里只阐述用定义证明的几个步骤:
①在区间D上,任取x1x2,令x1<x2;
②作差f(x1)-f(x2);
③对f(x1)-f(x2)的结果进行变形处理(通常是配方、因式分解、有理化、通分,利用公式等等);
④确定符号f(x1)-f(x2)的正负;
⑤下结论,根据“同增异减”原则,指出函数在区间上的单调性。
扩展资料:
函数单调性的应用:
利用函数单调性可以解决很多与函数相关的问题。通过对函数的单调性的研究,有助于加深对函数知识的把握和深化,将一些实际问题转化为利用函数的单调性来处理。
1、利用函数单调性求最值
求函数的最大(小)值有多种方法,但基本的方法是通过函数的单调性来判定,特别是对于小可导的连续点,开区问或无穷区问内最大(小)值的分析,一般都用单调性来判定。
2、利用函数单调性解方程
函数单调性是函数一个非常重要的性质,由于单调函数v=f(x)中x与y是一对应的,这样我们就可把复杂的方程通过适当变形转化为型如“f(x)=f(a)”方程,从而利用函数单调性解方程x=a,使问题化繁为简,而构造单调函数是解决问题的关键。
3、利用函数单调性证明不等式
首先,根据小等式的特点,构造一个单调函数;其次,判别此函数在某区问[a,b]上为单调函数;最后,由单调函数的定义得到要证明的小等式。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |