一个球的内接圆锥的最大体积
展开全部
解:记这个球的半径为R(R>0),并设其内接圆锥的底面半径为x(0<x≤R),高不小于R一侧的内接圆锥体积为f(x),则由椎体体积公式易知f(R)=πR³/3,而当0<x<R时有
f(x)=(1/3)πx²[R+√(R²-x²)]
=π[Rx²+x²√(R²-x²)]/3,
f'(x)=π[2Rx+2x√(R²-x²)-x³/√(R²-x²)]/3
=πx[2R+2√(R²-x²)-x²/√(R²-x²)]/3
=πx[2R+(2R²-3x²)/√(R²-x²)]/3,
令f'(x)=0得
2R√(R²-x²)=3x²-2R²,
4R²(R²-x²)=9x⁴-12R²x²+4R⁴,
-4R²x²=9x⁴-12R²x²,
4R²=9x²-12R²,
x²=8R²/9,x=2√2R/3,
继而,因为
f(2√2R/3)
=(1/3)π(8R²/9)[R+√(R²-8R²/9)]
=32πR³/81,
f(R)=πR³/3=27πR³/81<32πR³/81,
lim(x->0+)f(x)=(1/3)π·0²·[R+√(R²-0²)]
=0<32πR³/81,
所以,半径为R的球的内接圆锥的最大体积为32πR³/81.
f(x)=(1/3)πx²[R+√(R²-x²)]
=π[Rx²+x²√(R²-x²)]/3,
f'(x)=π[2Rx+2x√(R²-x²)-x³/√(R²-x²)]/3
=πx[2R+2√(R²-x²)-x²/√(R²-x²)]/3
=πx[2R+(2R²-3x²)/√(R²-x²)]/3,
令f'(x)=0得
2R√(R²-x²)=3x²-2R²,
4R²(R²-x²)=9x⁴-12R²x²+4R⁴,
-4R²x²=9x⁴-12R²x²,
4R²=9x²-12R²,
x²=8R²/9,x=2√2R/3,
继而,因为
f(2√2R/3)
=(1/3)π(8R²/9)[R+√(R²-8R²/9)]
=32πR³/81,
f(R)=πR³/3=27πR³/81<32πR³/81,
lim(x->0+)f(x)=(1/3)π·0²·[R+√(R²-0²)]
=0<32πR³/81,
所以,半径为R的球的内接圆锥的最大体积为32πR³/81.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询