一加一为什么等于二?

 我来答
匿名用户
2021-03-29
展开全部
1。这是意大利数学家皮亚诺在1889年提出的自然数公理,建立的自然数序数理论的规定。有兴趣可查看初等数学研究方面的书。
2。哥德巴赫猜想
  我们容易得出:
    4=2+2, 6=3+3,8=5+3,
    10=7+3,12=7+5,14=11+3,……
  那么,是不是所有的大于2的偶数,都可以表示为两个素数的呢?(1
+1问题)
  这个问题是德国数学家哥德巴赫(C Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。
同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为两个奇素数之和;每个大于等于9的奇数,都可表示为三个奇素数之和。其实,后一个命题就是前一个命题的推论。
  哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。
18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и M Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。
不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。
  直接证明哥德巴赫猜想不行,人们采取了迂回战术,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。
从20世纪20年代起,外国和中国的一些数学家先后证明了"9+9""2十3""1+5""l+4"等命题。
  1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和"。
这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠"仅一步之遥,在世界数学界引起了轰动。"1+2"也被誉为陈氏定理。
才梦菡iB
2021-03-29 · 超过17用户采纳过TA的回答
知道答主
回答量:114
采纳率:100%
帮助的人:5.2万
展开全部
怎么可能???一加一绝不可能等于二,这是常识好不好??谁告诉你一加一等于二的,简直是太荒谬了,从我们上小学起老师就从来没有说过一加一等于二,这么多年的书都白读了吧,我真怀疑你是不是读了一个假的小学
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式