二元函数可导性怎么判断?

 我来答
帐号已注销
2021-02-04 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数

1、设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在,则称f(x)在x0处可导。

2、若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。

扩展资料:

函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。上述定理说明:函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。 

函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。

参考资料来源:百度百科-可导

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式