求解一道高数极限题
展开全部
原式=lim(n->∞) {{1+1/[n!^(1/n)+n!^(1/n^2)]}^[n!^(1/n)+n!^(1/n^2)]}^{n/[n!^(1/n)+n!^(1/n^2)]}
=e^lim(n->∞) n/[n!^(1/n)+n!^(1/n^2)]
=e^lim(n->∞) 1/{[n!^(1/n)]/n+[n!^(1/n^2)]/n}
因为lim(n->∞) [n!^(1/n)]/n
=lim(n->∞) (n!/n^n)^(1/n)
=lim(n->∞) e^[(1/n)*ln(n!/n^n)]
=e^lim(n->∞) (1/n)*[ln(1/n)+ln(2/n)+...+ln(n/n)]
=e^∫(0,1) lnxdx
=e^[(xlnx-x)|(0,1)]
=e^(-1)
所以原式=e^lim(n->∞) 1/[e^(-1)+0]
=e^e
=e^lim(n->∞) n/[n!^(1/n)+n!^(1/n^2)]
=e^lim(n->∞) 1/{[n!^(1/n)]/n+[n!^(1/n^2)]/n}
因为lim(n->∞) [n!^(1/n)]/n
=lim(n->∞) (n!/n^n)^(1/n)
=lim(n->∞) e^[(1/n)*ln(n!/n^n)]
=e^lim(n->∞) (1/n)*[ln(1/n)+ln(2/n)+...+ln(n/n)]
=e^∫(0,1) lnxdx
=e^[(xlnx-x)|(0,1)]
=e^(-1)
所以原式=e^lim(n->∞) 1/[e^(-1)+0]
=e^e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询