求极限的几种类型与方法
展开全部
初级阶段:四则运算法,连续函数用代入法,分子分母同除最高次项法,分离非零定式因式法,分子有理化法,分子分母约去致零因式法。晋级阶段:等价无穷小替换因式法,不定式的罗比达法则,幂指函数配底或取对数。高级阶段:泰勒公式展开法,收敛级数通项趋于0,构造定积分法,应用积分和微分中值定理法。
求极限的方法
(1)分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
(2)无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;
(3)运用两个特别极限;
(4)运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小。比无穷小,分子分母还必须是连续可导函数。
(5)用Mclaurin(麦克劳琳)级数展开,而国内普遍译为Taylor(泰勒)展开。
(6)等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。
(7)夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。
(8)特殊情况下,化为积分计算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询