A1=0,aN+1=an+2n-1,求数列an的通项公式

 我来答
户如乐9318
2022-06-23 · TA获得超过6622个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:135万
展开全部
∵a1=0 a(n+1)=an+2n-1
∴a(n+1)-an=2n-1
∴ an-a(n-1)=2(n-1)-1
a(n-1)-a(n-2)=2(n-2)-1
.
a2-a1=2*1-1
将上面n-1个式子加起来得:
an-a1=2*1+2*2+...+2*(n-2)+2*(n-1)-(1+1+...+1)
=2*[1+2+.+(n-1)]-(n-1)
=2*(n-1)(1+n-1)/2 -(n-1)
=n(n-1)-(n-1)
=(n-1)^2
又∵a1=0
∴an=(n-1)^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式