求2道数学题的解法 1:tan71+tan49-√3tan71·tan49 2:(1-tan17)/(1+tan17) + cos146/(1+sin34)

 我来答
大仙1718
2022-07-07 · TA获得超过1268个赞
知道小有建树答主
回答量:171
采纳率:98%
帮助的人:60.5万
展开全部
应用:tang(x+y)=(tanx+tany)/(1-tanxtany)
于是tan120=tan(71+49)=(tan71+tan49)/(1-tan71tan49)
即 -√3=(tan71+tan49)/(1-tan71tan49)
移项得 -√3(1-tan71tan49)=(tan71+tan49)
即 tan71+tan49-√3tan71·tan49 =-√3
首先 (1-tan17)/(1+tan17) =(tan45-tan17)/(1+tan45tan17)
利用上题公式有:(1-tan17)/(1+tan17) =(tan45-tan17)/(1+tan45tan17)
=tan28
又有:cos146=-sin56,sin34=cos56
且 tan(x/2)=(1-cosx)/sinx=sinx/(1+cosx)
于是 cos146/(1+sin34)=-sin56/(1+cos56)=-tan28
原式化为 tan28-tan28=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式