f′(1)=2 , lim(x->0) [f(1-2x)-f(1+3x)]/x =
1个回答
展开全部
lim(x->0) [f(1-2x)- f(1+3x)]/x
=lim(x->0) { [f(1-2x)-f(0)] - [ f(1+3x)-f(0)] } /x
=lim(x->0) [f(1-2x)-f(0)]/x - lim(x->0) [ f(1+3x)-f(0)] /x
=(-2)*lim(x->0) [f(1-2x)-f(0)]/(-2x) - 3*lim(x->0) [ f(1+3x)-f(0)] /(3x)
=(-2)*f'(0) - 3*f'(0)
= -4 - 6
= -10
=lim(x->0) { [f(1-2x)-f(0)] - [ f(1+3x)-f(0)] } /x
=lim(x->0) [f(1-2x)-f(0)]/x - lim(x->0) [ f(1+3x)-f(0)] /x
=(-2)*lim(x->0) [f(1-2x)-f(0)]/(-2x) - 3*lim(x->0) [ f(1+3x)-f(0)] /(3x)
=(-2)*f'(0) - 3*f'(0)
= -4 - 6
= -10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询