1加上1加2分之一加上1加2加3分之一依次加上1+2+3+...+100分之一等于多少
1个回答
展开全部
因为:
1+2=2*3/2
1+2+3=3*4/2
1+2+3+4=4*5/2
1+2+3+……+100=100*101/2
所以,
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+2006)
=1+2/(2*3)+2/(3*4)+2/(4*5)+……+2/(100*101)
=2[(1/2+1/(2*3)+1/(3*4)+1/(4*5)+……+1/(100*101)〕
因为:
1/(2*3)=1/2-1/3;
1/(3*4)=1/3-1/4;
1/(4*5)=1/4-1/5;
……
1/(100*101)=1/100-1/101
所以,
原式=2(1/2+1/2-1/3+1/3-1/4+1/4-1/5+……+1/100-1/101)
=2(1-1/101)
=2*100/101
=200/101
1+2=2*3/2
1+2+3=3*4/2
1+2+3+4=4*5/2
1+2+3+……+100=100*101/2
所以,
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+2006)
=1+2/(2*3)+2/(3*4)+2/(4*5)+……+2/(100*101)
=2[(1/2+1/(2*3)+1/(3*4)+1/(4*5)+……+1/(100*101)〕
因为:
1/(2*3)=1/2-1/3;
1/(3*4)=1/3-1/4;
1/(4*5)=1/4-1/5;
……
1/(100*101)=1/100-1/101
所以,
原式=2(1/2+1/2-1/3+1/3-1/4+1/4-1/5+……+1/100-1/101)
=2(1-1/101)
=2*100/101
=200/101
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询