设三阶方阵A满足(A+E)3=0,求矩阵A的全部特征值,其中E为三阶单位矩阵.

 我来答
科创17
2022-06-16 · TA获得超过5883个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:172万
展开全部
设k是A的特征值,a是k对应的特征向量(a不等于零向量).则Aa=ka
因为(A+E)^3=0
即A^3+3A^2+3A+E=0
在上式两边同时右乘a得:
k^3a+3k^2a+3ka+a=0
即(k^3+3k^2+3k+1)a=0
(k+1)^3a=0
因为a不是零向量,所以(k+1)^3=0
所以k=-1(3重的特征向量)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式