∫lncosxdx 这个不定积分咋求,
1个回答
展开全部
用分部积分法,
设u=lncosx,v'=1,
u'=-sinx/cosx=-tanx,v=x,
原式=xlncosx+∫xtanxdx
对∫xtanxdx再进行分部积分,
设u=x,v'=tanx,
u'=1,v=(secx)^2,
∫xtanxdx=x*(secx)^2-∫(secx)^2dx
=x(secx)^2-tanx+C,
∫lncosxdx =x*lncosx+x*(secx)^2-tanx+C.
设u=lncosx,v'=1,
u'=-sinx/cosx=-tanx,v=x,
原式=xlncosx+∫xtanxdx
对∫xtanxdx再进行分部积分,
设u=x,v'=tanx,
u'=1,v=(secx)^2,
∫xtanxdx=x*(secx)^2-∫(secx)^2dx
=x(secx)^2-tanx+C,
∫lncosxdx =x*lncosx+x*(secx)^2-tanx+C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询