不定积分怎么算?

 我来答
PasirRis白沙
高粉答主

2022-09-23 · 说的都是干货,快来关注
知道大有可为答主
回答量:7357
采纳率:100%
帮助的人:2939万
展开全部

1、不定积分,indefinite integral,就是将积分中的一部分

     做一个代换,当成一个新的变量;

     换元法 = 变量代换法 = substitution


2、分部积分法,integral by parts

     是由积的求导法则推导出来的积分法,由先对一部分积分,

    然后对另一部分积分。


3、分别列举两例如下:

     (图片均可点击放大,放大后更加清晰)





下面的也是分部积分法:

吉禄学阁

2023-05-14 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62480

向TA提问 私信TA
展开全部
  • 根式换元法:

设√(x+2)=t,则x=(t^2-2),代入得:

∫x√(x+2)dx

=∫t*(t^2-2)d(t^2-2),

=2∫t^2*(t^2-2)dt,

=2∫(t^4-2t^2)dt,

=2/5*t^5-4/3*t^3+C,

=2/5*(x+2)^(5/2)-4/3*(x+2)^(3/2)+C,

  • 凑分法不定积分:

∫x√(2x^2+1)^3dx

=(1/2)∫√(2x^2+1)^3dx^2

=(1/4)∫√(2x^2+1)^3d2x^2

=(1/4)∫(2x^2+1)^(3/2)d(2x^2+1)

=(1/4)*(2/5)* (2x^2+1)^(5/2)+C.

=(1/10)* (2x^2+1)^(5/2)+C.

  • 分部积分法计算不定积分:

∫x^4 (lnx)^2dx

=(1/5)∫(lnx)^2dx^a11,以下第一次使用分部积分法,

=(1/5) (lnx)^2*x^5-(1/5)∫x^5d(lnx)^2

=(1/5) (lnx)^2*x^5-(2/5)∫x^5*lnx*(1/x)dx

=(1/5) (lnx)^2*x^5-(2/5)∫x^4*lnxdx

=(1/5) (lnx)^2*x^5-(2/25)∫lnxdx^5,以下第二次使用分部积分法,

=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^5dlnx

=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^5*1/xdx

=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^adx

=(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/125)x^5+c

=x^5 [(1/5) (lnx)^2-(2/25)lnx+(2/125)]+c

=(1/125)x^5 [25 (lnx)^2-10lnx+2]+c.

  • 凑分及分部积分法

∫(10x^2+x+1)lnxdx

=∫lnxd(10x^3/3+x^2/2+x),对幂函数部分进行凑分,

=lnx*(10x^3/3+x^2/2+x)-∫(10x^3/3+x^2/2+x)dlnx

=lnx*(10x^3/3+x^2/2+x)-∫(10x^3/3+x^2/2+x)dx/x

=lnx*(10x^3/3+x^2/2+x)-∫(10x^2/3+x/2+1)dx

=lnx*(10x^3/3+x^2/2+x)-(10x^3/9+x^2/4+x)+C。

  • 不定积分概念

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

  • 不定积分的计算

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式