什么是数轴?
在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴(number line),在数学中有着广泛的运用。两根互相垂直且原点重合的数轴可以构成平面直角坐标系;三根互相垂直且原点重合的数轴可以构成空间直角坐标系。
一、数轴概念:
在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴(number line),它满足以下要求:(1)在直线上任取一个点表示0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1(向右1个单位长度),2(向右2个单位长度),3(向右3个单位长度),…;从原点向左,用类似方法依次表示-1(向左1个单位长度),-2(向左2个单位长度),-3(向左3个单位长度)…
在数轴上,除了数0要用原点表示外,要表示任何一个不为0的有理数,根据这个数的正负号确定它所在数轴的哪一边(通常正数在原点的右边,负数在原点的左边),再在相应的方向上确定它与原点相距几个单位长度,然后画上相应的点。
二、数轴的几何意义
数轴是一种特定几何图形。原点、正方向、单位长度称数轴的三要素,这三者缺一不可。
1)从原点出发,朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
2)在数轴上表示的两个数,正方向的数总比另一边的数大。
3)正数都大于0,负数都小于0,正数大于一切负数。
注:单位长度则是指取适当的长度作为单位长度,比如可以取2m作为单位长度"1",那么4m就表示2个单位长度。长度单位则是指米,厘米,毫米等表示长度的单位。二者不容混淆。
数轴上的点和数是一一对应的。(任何一个数,包括虚数,都可以用数轴上的一个点来表示。)
数轴的正方向一般向右,但也不排除向左的可能,而且越靠近正方向的数越大,相反离正方向越远的数越小。
画数轴时一般要先画横线和正方向,其次画零,再根据题意画单位长度。
三、相反数
只有符号不同的两个数叫做互为相反数,其中的一个数叫做另一个数的相反数。
(a≠0)a的相反数是-a,0的相反数是0。
四、绝对值
在数轴上表示一个数的点离原点的距离就叫做这个数的绝对值
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。0的绝对值是0。
公式|a|=?
若a大于0, 则a的绝对值还等于a;
若a等于0 ,则a的绝对值等于0 ;
若a小于0, 则a的绝对值等于-a。
性质:绝对值有非负性。
有理数比较大小:
一切正数大于0,0大于一切负数,正数大于一切负数。
说明:数轴上右边的数总比左边的数大,两个负数相比较,绝对值大的反而小。
五、数轴用法:
数学上,数轴是个一维的图,整数作为特殊的点均匀地分布在一条线上。数轴是一条规定了原点、方向和单位长度的直线。其中,原点、方向和单位长度称为数轴的三要素。它通常被用来帮助教授简单的加法或减法(特别是运算中有负数的时候)。
大多数情况下,数轴被表示为水平的(当然这不是必须的)。它被原点0分为对称的两个部分。通常正数在0的右边,负数在0的左边。全体实数和数轴上的点一一对应。
数轴是一条规定了原点、方向和单位长度的直线。其中,原点、方向和单位长度称为数轴的三要素。
一、数轴的三要素:
1、原点
数轴上的原点与实数0对应,代表实数0。
2、正方向
对一条水平数轴,通常规定水平向右的方向为其正方向,水平向左的方向为其负方向。
对一条竖直的数轴,通常规定竖直向上的方向为其正方向,竖直向下的方向为其负方向。(注:参照平面直角坐标系中的x轴、y轴)
3、单位长度
(1)数轴上的一个单位长度等于数轴上两个相邻整数点间的距离。
(2)可以根据实际情况,选择任意的长度作为一个数轴的“单位长度”。
(3)同一个数轴上的单位长度及其表示的长度必须相同,不同数轴间的单位长度及其表示的长度可以不同。
二、数轴的作用:
1、数轴能形象地表示数,横向数轴上的点和 实数成一一对应,即每一个实数都可以用数轴上的一个点来表示.
2、比较实数大小,以0为中心,右边的数比左边的数大!
3、 虚数也可以用垂直于横向数轴且同一原点的纵向数轴表示,这样就与横向数轴构成了 复数平面。
4、用两根互相垂直且有同一原点的数轴可以构成 平面直角坐标系;用三根互相垂直且有同一原点的数轴可以构成 空间直角坐标系,以确定物体的位置。
三、数轴的画法:
1、首先画一条水平直线;
2、然后在直线上取一点作为原点;
3、再在直线的右边画上箭头,表示数轴的正方向;
数轴是初中数学的一个知识点,让我来给大家介绍一下数轴的定义、意义以及运用。
一、定义
规定了原点、正方向、单位长度的直线叫作数轴。其中“原点、正方向、单位长度”被称为数轴的三要素。
如下图:
1、原点。数轴上的原点与实数0对应,代表实数0。
2、正方向。
对一条水平数轴,通常规定水平向右的方向为其正方向,水平向左的方向为其负方向。
对一条竖直的数轴,通常规定竖直向上的方向为其正方向,竖直向下的方向为其负方向。(注:参照平面直角坐标系中的x轴、y轴)
3、单位长度
(1)数轴上的一个单位长度等于数轴上两个相邻整数点间的距离。
(2)可以根据实际情况,选择任意的长度作为一个数轴的“单位长度”。
(3)同一个数轴上的单位长度及其表示的长度必须相同,不同数轴间的单位长度及其表示的长度可以不同。
二、如何画数轴
画数轴的步骤:① 画直线,定原点
② 从原点向右(或上)的方向为正方向,从原点向左(或下)为负方向。
③ 选取适当长度为单位长度。
④ 在数轴上标出1、2、3、—1、—2、—3等各点。如下图所示。
三、数轴的几何意义
数轴是一种特定几何图形;原点、正方向、单位长度称数轴的三要素,这三者缺一不可。
1)从原点出发,朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
2)在数轴上表示的两个数,正方向的数总比另一边的数大。
3)正数都大于0,负数都小于0,正数大于一切负数。
注:单位长度则是指取适当的长度作为单位长度,比如可以取2m作为单位长度“1”,那么4m就表示2个单位长度。长度单位则是指米,厘米,毫米等表示长度的单位。
概念
在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴(number line),它满足以下要求:(1)在直线上任取一个点表示0这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1(向右1个单位长度),2(向右2个单位长度),3(向右3个单位长度),…;从原点向左,用类似方法依次表示-1(向左1个单位长度),-2(向左2个单位长度),-3(向左3个单位长度)…
在数轴上,除了数0要用原点表示外,要表示任何一个不为0的有理数,根据这个数的正负号确定它所在数轴的哪一边(通常正数在原点的右边,负数在原点的左边),再在相应的方向上确定它与原点相距几个单位长度,然后画上相应的点。
几何意义
数轴是一种特定几何图形;原点、正方向、单位长度称数轴的三要素,这三者缺一不可。
1)从原点出发,朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
2)在数轴上表示的两个数,正方向的数总比另一边的数大。
3)正数都大于0,负数都小于0,正数大于一切负数。
注:单位长度则是指取适当的长度作为单位长度,比如可以取2m作为单位长度"1",那么4m就表示2个单位长度。长度单位则是指米,厘米,毫米等表示长度的单位。
二者不容混淆。
数轴上的点和数是一一对应的。(任何一个数,包括虚数,都可以用数轴上的一个点来表示。)
数轴的正方向一般向右,但也不排除向左的可能,而且越靠近正方向的数越大,相反离正方向越远的数越小。
画数轴时一般要先画横线和正方向,其次画零,再根据题意画单位长度。
相反数
只有符号不同的两个数叫做互为相反数,其中的一个数叫做另一个数的相反数。
(a≠0)a的相反数是-a,0的相反数是0。
绝对值
在数轴上表示一个数的点离原点的距离就叫做这个数的绝对值
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。0的绝对值是0。
公式|a|=?
若a大于0, 则a的绝对值还等于a;
若a等于0 ,则a的绝对值等于0 ;
若a小于0, 则a的绝对值等于-a。
性质:绝对值有非负性
有理数比较大小:
一切正数大于0,0大于一切负数,正数大于一切负数。
说明:数轴上右边的数总比左边的数大,两个负数相比较,绝对值大的反而小。