
用分离变量法解微分方程 dy/dx=xe^(y-2x)
展开全部
dy/dx=xe^y*e^(-2x);dy/e^y=xe^(-2x)dx;两边积分得:∫e^(-y)dy=∫e^(-2x)*xdx+C;-e^(-y)=-1/2∫xd(e^(-2x))+c;以下是分部积分法-e^(-y)=-1/2{xe^(-2x)-∫e^(-2x)dx}+C;-e^(-y)=-1/2[xe^(-2x)+1/2e^(-2x)]+C;y=ln[e^...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询