逐点收敛和一致收敛的区别?

 我来答
惠企百科
2022-11-15 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

1、定义不同

逐点收敛指对定义域里的每一点,这个函数列在这点上的取值都趋于一个极限值。这时,被趋近的这个特定函数称作函数列的逐点极限。

在测度理论中,对一个可测空间上的可测函数有几乎处处收敛的概念,也就是说几乎处处逐点收敛。叶戈罗夫定理说明,在有限测度的集合上几乎处处逐点收敛,意味着在稍微较小的集合上一致收敛。

一致收敛是高等数学中的一个重要概念,又称均匀收敛。一致收敛是一个区间(或点集)相联系,而不是与某单独的点相联系。

2、性质不同

逐点收敛(或称简单收敛)描述的是一列函数向一个特定函数趋近的现象中的一种。逐点收敛也可以理解为由半范数建立的拓扑。具有这种拓扑的函数组成的空间叫做逐点收敛空间。这个拓扑与乘积拓扑是等价的。一致收敛与一个区间相联系。

3、连续性不同

一致收敛能够保持函数列的连续性,但逐点收敛不能。在各种收敛中,逐点收敛最为直观,容易想象,但不能很好地保持函数的一些重要性质,比如说连续性等等。

参考资料来源:百度百科-一致收敛

参考资料来源:百度百科-逐点收敛

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式