为什么r(a)+r(a*)_n?

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8862万
展开全部

两个n阶方阵A,B乘积的秩满足不等式:r(A)+r(B)-n ≤ r(A·B)。

而A·A* = |A|·E这是伴随矩阵的性质。

A退化时|A| = 0,于是A·A* = |A|·E = 0,r(A·A*) = 0。前者的秩 ≥ r(A)+r(B), 后者的秩 = r(AB)+n, 比较即得。

A (I - A) = 0,说明 I - A 的每个向量都在 A 的零空间里,所以 rank(I - A) <= dim(N(A)) = n-r
所以:rank(A) + rank(I - A) <= n。


扩展资料:

系数行列式|A-λE|称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。

¦(λ)=|λE-A|=λ+a1λ+?+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。

n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。

以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。

因为|λ0E-A|=0,(λ0E-A)X=θ必存在非零解称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。

参考资料来源:百度百科-矩阵特征值

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式