请教如何求arcsinX的导数?
y=arcsinx y'=1/√(1-x^2)
反函数的导数:
y=arcsinx
那么,siny=x
求导得到,cosy *y'=1
即 y'=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
扩展资料
商的导数公式:
(u/v)'=[u*v^(-1)]'
=u' * [v^(-1)] +[v^(-1)]' * u
= u' * [v^(-1)] + (-1)v^(-2)*v' * u
=u'/v - u*v'/(v^2)
通分,易得:
(u/v)=(u'v-uv')/v²
常用导数公式:
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna,y=e^x y'=e^x
4、y=logax y'=logae/x,y=lnx y'=1/x
5、y=sinx y'=cosx
6、y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
9、y=arcsinx y'=1/√1-x^2
2025-01-06 广告
广告 您可能关注的内容 |