求一个矩阵的逆矩阵,可以怎么求呢?

 我来答
xiao1060503543
高粉答主

2023-01-07 · 说的都是干货,快来关注
知道小有建树答主
回答量:274
采纳率:82%
帮助的人:13万
展开全部

一般用初等行变换,来求,对增广矩阵A|E,同时施行初等行变换,化成E|A^-1;

在原矩阵的右侧接写一个四阶单位矩阵,然后对扩展矩阵施行初等行变换,使前面的四阶矩阵化为单位矩阵,则右侧的单位矩阵就化为了原来前面的逆矩阵。


扩展资料

逆矩阵求法:

求逆矩阵的初等变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵

对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A。

如求

的逆矩阵A-1。

故A可逆并且,由右一半可得逆矩阵A-1=

初等变换法计算原理

若n阶方阵A可逆,即A行等价I,即存在初等矩阵P1,P2,...,Pk使得

,在此式子两端同时右乘A-1得:

比较两式可知:对A和I施行完全相同的若干初等行变换,在这些初等行变化把A变成单位矩阵的同时,这些初等行变换也将单位矩阵化为A-1。

如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且rank(A) = rank(B) = n)。

换句话说,这两个矩阵可以只经由初等行变换,或者只经由初等列变换,变为单位矩阵[2] 。

伴随矩阵法

如果矩阵可逆,则

注意:

中元素的排列特点是的第k列元素是A的第k行元素的代数余子式。

要求得

即为求解的余因子矩阵的转置矩阵。

A的伴随矩阵为,其中Aij=(-1)i+jMij称为aij的代数余子式。

参考资料百度百科-逆矩阵

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式