y=sinx+1/2sinx-1的值域
展开全部
y=(sinx+1)/(2sinx-1)
=[(sinx-1/2)+3/2]/(2sinx-1)
=1/2+(3/2)/[2sinx-1]
因为-1≤sinx≤1,所以-3≤2sinx-1≤1.
则1/[2sinx-1]≥1或1/[2sinx-1]≤-1/3.
(3/2)/[2sinx-1]≥3/2或(3/2)/[2sinx-1]≤-1/2.
所以1/2+(3/2)/[2sinx-1] ≥2或1/2+(3/2)/[2sinx-1]≤0.
即函数值域是(-∞,0]∪[2,+∞).
=[(sinx-1/2)+3/2]/(2sinx-1)
=1/2+(3/2)/[2sinx-1]
因为-1≤sinx≤1,所以-3≤2sinx-1≤1.
则1/[2sinx-1]≥1或1/[2sinx-1]≤-1/3.
(3/2)/[2sinx-1]≥3/2或(3/2)/[2sinx-1]≤-1/2.
所以1/2+(3/2)/[2sinx-1] ≥2或1/2+(3/2)/[2sinx-1]≤0.
即函数值域是(-∞,0]∪[2,+∞).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询