为什么二项式各项系数之和是2^n
(1+x)^n=c(n,0)1^n+c(n,1)1^(n-1)x+(n,2)1^(n-2)x^2+......+c[n,(n-1)]1^1n^(n-1)+c(n,n)1^0x^n
当x=1时
c(n,0)1^n+c(n,1)1^(n-1)x+(n,2)1^(n-2)x^2+......+c[n,(n-1)]1^1n^(n-1)+c(n,n)1^0x^n=c(n,0)+c(n,1)+(n,2)+......+c[n,(n-1)]+c(n,n)刚好是二项式(1+x)^n各项的系数和
将x=1代入得
2^n=c(n,0)+c(n,1)+(n,2)+......+c[n,(n-1)]+c(n,n)
所以二项式各项系数之和是2^n
扩展资料
二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理
二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学. 求二项式展开式系数的问题,实际上是一种组合数的计算问题. 用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”.
参考资料百度百科-二项式定律