1+1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50) 简算?
1个回答
展开全部
因为(1+2+...+(n-1))/n=[n(n-1)/2]/n=(n-1)/2
所以1+1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50)
=1+1/2+2/2+...+49/2
=1+(1+2+3+...+49)/2
=1+49*50/2*1/2 (1+2+……+n=n(n+1)/2)
=1+1225/2
=1227/2,9,
ll禹_ll 举报
答案应该是613.5,你的第一步是不是一个公式?
举报 娇滴滴的乔
哈哈 1227/2就等于613.5的 第一步是一个可推导得公式也就是1+2+……+n=n(n+1)/2
ll禹_ll 举报
也就是说第一步是一个固有公式,也是计算这个题的唯一方法 不是的 这是一种比较简便的方法 你也可以自己进行推导
1+1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50)
先不管1
1/2=1/2 ①
1/3+2/3=2/2 ②
1/4+2/4+3/4=3/2 ③
1/5+2/5+3/5+4/5=4/2 ④
……
推导,n式的和为n/2
那么1/2+(1/3+2/3)+(1/4+2/4+3/4)+(1/5+2/5+3/5+4/5)+......+(1/50+2/50+...+49/50)
=1/2+2/2+3/2+……+49/2
=(1+49)*49/4(推导)
=612.5
1+612.5=答案,1+1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50) 简算
过程详细点,我想知道每步怎么得出来的,谢谢
所以1+1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50)
=1+1/2+2/2+...+49/2
=1+(1+2+3+...+49)/2
=1+49*50/2*1/2 (1+2+……+n=n(n+1)/2)
=1+1225/2
=1227/2,9,
ll禹_ll 举报
答案应该是613.5,你的第一步是不是一个公式?
举报 娇滴滴的乔
哈哈 1227/2就等于613.5的 第一步是一个可推导得公式也就是1+2+……+n=n(n+1)/2
ll禹_ll 举报
也就是说第一步是一个固有公式,也是计算这个题的唯一方法 不是的 这是一种比较简便的方法 你也可以自己进行推导
1+1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50)
先不管1
1/2=1/2 ①
1/3+2/3=2/2 ②
1/4+2/4+3/4=3/2 ③
1/5+2/5+3/5+4/5=4/2 ④
……
推导,n式的和为n/2
那么1/2+(1/3+2/3)+(1/4+2/4+3/4)+(1/5+2/5+3/5+4/5)+......+(1/50+2/50+...+49/50)
=1/2+2/2+3/2+……+49/2
=(1+49)*49/4(推导)
=612.5
1+612.5=答案,1+1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/50+2/50+...+49/50) 简算
过程详细点,我想知道每步怎么得出来的,谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询